
Automatizácia:
Trend v správe
sieťovej infraštruktúry

AGENDA

▪ Presentation 40 min

▪ Discussion and summary 15 min

▪ Microphones are muted

▪ You can write questions to Q&A

Infrastructure

Automation

▪ Infrastructure automation benefits

▪ Some facts…

▪ Model-Driven Programmability

▪ Device-Level vs. Controller-Level Management

▪ Imperative and Declarative Method

▪ Service Models

▪ Service Delivery

▪ Use Cases

Part #1/5

▪ Reduced possibility of (human) mistakes

▪ Operational efficiency is considerably increased

▪ Repeatability

▪ Lower operating cost

▪ Network downtime is decreased

▪ More effective staff

▪ No expert-level staff requirements

▪ Longer initialization curve

▪ Customization is required

▪ Complexity in modern networks

▪ Losing the dominance of technology

▪ Change of thinking

Advantages Disadvantages

Infrastructure Automation

A bit of history (Model-Driven Programmability)

SNMP NETCONF gRPC RESTCONF

Year ~1980 ~2006/2011 2015 2017

Standard IETF IETF Google IETF

Transport UDP SSH HTTP HTTP

Resources OIDs Paths ProtoBuf URLs

Encoding BER XML Binary JSON, XML,…

Data Modeling SMI/MIB YANG YANG YANG

Limited NW only Universal

Model-Driven Programmability provides

mechanism to install, manipulate and delete

configuration (not only network devices)

Device-level vs. Controller-level Management

A Network Controller is a centralized software

platform dedicated to managing the configuration

and operational data of network devices

D
e

v
ic

e
-l
e
ve

l
m

a
n

a
g
e

m
e

n
t

C
o

n
tr

o
ll
e

r-
le

ve
l
m

a
n

a
g
e

m
e

n
t

Data plane

Control plane

MGMT plane

Northbound API

For management and integration

(including third-party API - REST API)

Southbound API

Connect and manage the end devices

(Telnet, SSH, SNMP, NETCONF, gRPC,

RESTCONF,…)

Imperative (Procedural) vs. Declarative method (engineering point of view)

REST API endpoint

One

Declaration Config

REST API endpoint

Change #1

Change #2

Change #3

Tells the target system exactly how to do something. What you want to do.

Imperative Declarative

Imperative (Procedural) vs. Declarative method (in the language of managers ;))

Tells the target system exactly how to do something. What you want to do.

Imperative Declarative

(Cloud) Service Models

Traditional IT
Infrastructure

(as a Service)

Platform

(as a Service)

Software

(as a Service)

Applications

Data

Runtime

Middleware

Operating System

Virtualization

Servers

Storage

Networking

Applications

Data

Runtime

Middleware

Operating System

Virtualization

Servers

Storage

Networking

Applications

Data

Runtime

Middleware

Operating System

Virtualization

Servers

Storage

Networking

Applications

Data

Runtime

Middleware

Operating System

Virtualization

Servers

Storage

Networking

You manage

Delivered

as a Service

IaaS PaaS SaaS

Used by… IT Admins SW Developers End Users

Service Delivery Workflow

Technician

Change request

Code commit

Static code analysis

Deploy to test infra

Notify admin

with changes

Admin review

and approval

Deploy to prod

(manual / auto)

Monitor infra

and user feedback

Customer

Intent

Customer

Admin

DevOps
NetOps

Service Delivery Tools (very short review)

Migration to new infra

▪ Every deploy is consistent – using migration process agreed

before. Also - input validation and automation is used

(eliminating human errors)

▪ Lowering maintenance window duration (configs are prepared

before, deployed quickly during window without many GUI clicks)

▪ In case of problem input config can be edited and redeployed

quickly (or rollbacked)

…and many more

Automation Use Cases

Unified policy distribution with approval process

▪ Credentials

▪ DNS, NTP, SNMP settings

▪ New device provisioning

Input validation before pushing to production

▪ Input is structured -> it is possible to make various validation

checks (JSON schemas validators, CI/CD pipeline, etc.)

▪ Naming unification (problem: every admin use different style)

▪ Infrastructure templates – design is maintained across many

environments

Bonus

#1 network state is abstracted in the repository – this can

be used as documentation or for testing

#2 migration workflow can be used later/again for

deployment of new services

LAB intro

▪ Automation workflow

▪ Git and GitLab

Part #2/5

Repositories

AnsibleNetOps Tools

Automation workflow

Input Config Automation workflow Device

Python

Python(run)

Python(SDK)

YAML Config

Playbook

Tasks

Data store

File System

Sharepoint

etc…

MS Excel

Database

End User / Customer

Admin

Automation Deploy

Legacy Deploy

F5 LTM

F5 AFM

F5 DNS

Cisco FTD

vMware

Cloud

Etc…

SD-WAN

Cisco ACI

2

1

3

Repositories

AnsibleNetOps Tools

Automation workflow

Input Config Automation workflow Device

Python

Python

Python(SDK)

YAML Config

Playbook

Tasks

Data store

File System

Sharepoint

etc…

MS Excel

Database

End User / Customer

Admin

Automation Deploy

Legacy Deploy

F5 LTM

F5 AFM

F5 DNS

Cisco FTD

vMware

Cloud

Etc…

SD-WAN

Cisco ACI

2

1

3

Device Data

Device configuration

Issue/change tracker

Git (and GitLab)

NetOps Tools

Ansible

Inventory

Issue tracker

JSON Schema

and more…

NetOps Doc

Wiki

Customer

Admin

Partner

Developer

Issue solver

Doc writer

Git is a free and open-source versioning control system.

GitLab is a Git-based platform with lot of powerful features.

Dynamic (Device) configuration

Device configuration and history

Static (NetOps) code

Automation tools source code

with revisioning and history

LAB – Firewall

▪ Cisco FMC/FTD

▪ NetOps principles

▪ LAB: FW rules automation

Part #3/4

▪ Traditional configuration methods

▪ GUI (FTD or FMC), CLI show commands

▪ (REST API) Modern configuration management

▪ FTD – REST API, full config with ansible

▪ FMC - REST API, basic config with ansible/terraform

▪ (SDK) “fmcapi” python package

▪ Cisco community package on GitHub – easier API scripting

▪ https://github.com/marksull/fmcapi

Cisco FTD automation intro

Admin Cisco FMC Cisco FTD

LAB1: FW automation

Client

Bob

Alice

web server #1

ServerInfrastructure

Situation:

Clients can connect to web server

LAB1: FW automation

Client

Bob

Alice

web server #1

ServerInfrastructure

Change request:

Only Alice can connect to web server.
Solution:

Disable connection on FW

LAB - Application

Delivery Controller

▪ F5 BIG-IP automation

▪ Imperative vs. Declarative method

▪ JSON Schema

▪ LAB: f5 LTM automation

Part #4/5

▪ Traditional BIG-IP configuration methods

▪ CLI and GUI (Web API) – not useful for automation

▪ SDK (Software Development Kit)

▪ F5 SDK (Python) – client library to access various (most popular) f5 products and services

▪ REST API (Automation Tool Chain)

▪ Declarative Onboarding (DO) - initial configuration (license, module provision, network, users,…)

▪ Application Services 3 (AS3) – configuring application services

▪ Telemetry Streaming (TS) – for streaming statistics (device, VS, pool,…) to external application

▪ Ecosystems (3rd party) Integration (using SDK and/or REST API)

▪ Ansible

▪ Terraform

▪ Cisco ACI

F5 BIG-IP automation intro

Source: clouddocs.f5.com

F5 BIG-IP automation workflow (imperative vs. declarative deep dive)

YAML

config

file

JSON

declaration

file (AS3)

Declarative method

f5

partition

(tenant)

YAML

config

file

Imperative method

f5

partition

Ansible

(Jinja, JSON

schema,…)

Ansible

f5_bigip

Ansible

f5_module

Local processing Remote callDevice Config

F5 BIG-IP automation workflow (imperative vs. declarative deep dive)

YAML

config

file

JSON

declaration

file (AS3)

Declarative method

f5

partition

(tenant)

YAML

config

file

Imperative method

f5

partition

Ansible

(Jinja, JSON

schema,…)

Postman

(or curl)

Ansible

f5_module

Local processing Remote callDevice Config

Ansible Collections

▪ Imperative (f5_modules)

https://galaxy.ansible.com/f5networks/f5_modules

▪ Declarative (f5_bigip)

https://galaxy.ansible.com/f5networks/f5_bigip

F5 resources

F5 appsvsc extension

▪ RPM package https://github.com/F5Networks/f5-appsvcs-extension

▪ + Postman collection

▪ + JSON schema

AS3

▪ AS3 documentation

https://clouddocs.f5.com/products/extensions/f5-

appsvcs-extension/latest/userguide/

https://galaxy.ansible.com/f5networks/f5_modules
https://galaxy.ansible.com/f5networks/f5_bigip
https://github.com/F5Networks/f5-appsvcs-extension
https://clouddocs.f5.com/products/extensions/f5-appsvcs-extension/latest/userguide/

▪ Describes your existing data format(s)

▪ Validates input data

▪ Vocabulary can be public or private

▪ Use-case:

▪ Automated testing

▪ Ensuring quality of client submitted data

▪ Real-time documentation

JSON schema

JSON Schema is a vocabulary that allows you to

annotate and validate JSON (or YAML) documents

Source: json-schema.org

Client

LAB2: f5 automation

Bob

Alice

web server #1

ServerInfrastructure

Situation:

Only Alice can connect to web server

Client

LAB2: f5 automation

Bob

Alice
web server #1

web server #2
VIP

ServerInfrastructure

Change request:

▪ Add server #2, Add LB

▪ Disable direct access to servers

Solution:

▪ Disable direct connection on FW

▪ Create virtual server on LB

Client

LAB3: How about a more complex configuration?

Bob

Alice

VS-1:80

ServerInfrastructure

What’s about 2x100 VSs and 100 POOLs with 5 MEMBERs each?

VS-1:443

VS-100:80

Server Pool #1

Server Pool #2

Server Pool #100

…

…

VS-100:443

Deployment time ~1 minute ;)

Summary

▪ Why to use Infrastructure automation?

▪ Our experience and customer’s feedback

▪ Every process can be somehow automated

Part #5/5

Why to use Infrastructure automation

▪ Reduced possibility of (human) mistakes

▪ Repeatability

▪ Lower operating cost

Summary

Our experience and customer’s feedback

▪ Reduced possibility of (human) mistakes

▪ Speed of configuration and/or migration process

▪ Config validation and unification/standardization

▪ Documentation (source of truth)

We can do much more…

▪ Problem well defined = problem half solved

▪ Every process can be somehow automated

▪ Any use-case is possible

ANKETA A DISKUSIA

Praha

Soitron s.r.o.

Pekařská 621/7

155 00 Praha 5

tel.: +420 266199918

e-mail: marketing@soitron.com

web: www.soitron.com

Soitron Inspirárium:

www.soitron.sk/riesenia-a-sluzby/soitron-inspirarium

Roman Panenka

Network System Engineer

Bratislava

Soitron, s.r.o.

Plynárenská 5

829 75 Bratislava 25

tel.: +421 258224111

Martin Kyrc

Network System Engineer

